Controlled manipulation and in situ mechanical measurement of single co nanowire with a laser-induced cavitation bubble.

نویسندگان

  • Xiaohu Huang
  • Pedro A Quinto-Su
  • S Roberto Gonzalez-Avila
  • Tom Wu
  • Claus-Dieter Ohl
چکیده

The flow induced by a single laser-induced cavitation bubble is used to manipulate individual Co nanowires. The short-lived (<20 μs) bubble with a maximum size of 45 μm is created in an aqueous solution with a laser pulse. Translation, rotation, and radial motion of the nanowire can be selectively achieved by varying the initial distance and orientation of the bubble with respect to the nanowire. Depending on the initial distance, the nanowire can be either pushed away or pulled toward the laser focus. No translation is observed for a distance further than approximately 60 μm, while at closer distance, the nanowire can be bent as a result of the fast flow induced during the bubble collapse. Studying the dynamics of the shape recovery allows an estimation of the Young's modulus of the nanowire. The low measured Young's modulus (in a range from 9.6 to 13.0 GPa) of the Co nanowire is attributed to a softening effect due to structural defects and surface oxidation layer. Our study suggests that this bubble-based technique allows selectively transporting, orienting, and probing individual nanowires and may be exploited for constructing functional nanodevices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled permeation of cell membrane by single bubble acoustic cavitation.

Sonoporation is the membrane disruption generated by ultrasound and has been exploited as a non-viral strategy for drug and gene delivery. Acoustic cavitation of microbubbles has been recognized to play an important role in sonoporation. However, due to the lack of adequate techniques for precise control of cavitation activities and real-time assessment of the resulting sub-micron process of so...

متن کامل

Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...

متن کامل

A method for bubble volume measurement under constant flow conditions in gas–liquid two-phase flow

Measuring the volume of a bubble, especially at its detachment, is a basic subject in gas-liquid two-phase flow research. A new indirect method for this measurement under constant flow conditions is presented. An electronic device is designed and constructed based on laser beam intensity. This device calculates the frequency of the bubble formation by measuring the total time of the formation p...

متن کامل

Dynamics of laser-induced cavitation bubbles

Single cavitation bubble luminescence induced by laser in contrast to single bubble sonoluminescence has no need in a sound field for a strong collapse and for light emission. The cavitation bubbles are produced by focused laser light and make the single strong collapse. As shown experimentally, the number of emitted photons from cavitation luminescence is much greater than it was observed in s...

متن کامل

Optodynamic Characterization of Laser-Induced Bubbles

Laser-induced bubbles can be caused by an optical breakdown in water. They are a result of the optodynamical process where the energy of a high intensity laser pulse is converted into the mechanical energy through an optodynamic conversion. At this process the absorbed optical energy causes plasma expansion that in turn initiates dynamic phenomena: spreading of a shock wave and the development ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 10 10  شماره 

صفحات  -

تاریخ انتشار 2010